
b

SANDIA REPORT
SAND99-8245.
Unlimited Release
Printed March 1999

.’...,,

‘““ AClass ofTrust-Region
Parallel Optimization.. ,.. .;.“.-.,.,,,.Y,x.,.\ ~,.,.”:,.,’ ,,>:!.,: ,,.’,:,,,,.,,.,,:,~.~’.;;, ,...,.’.~‘:,”...’:, s:,‘ ,.;..:.-:;;:..:,, , “.’:,,,’, “,....-,s,...::<,.,:,,1:,:’.’.: “.:,,’.. ...”,..:.,,”,. ,.’ ,.,.,,.>...:, ,..’-,:’”,:” ‘,...-.. ..’,:“,,l.,, ,.,, !-....:,,.:”.,:,. ,.:.:..’,,. ‘,”’,“”-, ,,: ,,,,..,.,:,, ‘.’,:.”,.” , .’~ ,-..,,‘..,~.$.,,’:.”..”-,:., .- .,,.,,.,,,,~.”,,. ,.. .;.”..”:”.. ,;.:, :.,,.,.,:’.,!.’:.< :.’‘,..,.,’,...”:”-.....-’... ,.,“.,,.,!,’,,$,..+..’:;,,,::,,!,.,

b P. D. FkM@I, J. C. IMeza

. WiwwfKlby
136if@a$WktW#L@x2ratories
w~, !J@wMexico 87185 and Livermore, California 94550

?3&@kl @a multfprogram laboratory operated by Sandia Corporation,
a Lockheed Marth Company, for the United States Department of
Energy under Contract DE-A(204-94AL85000.

Approved for public releaeq further dissemination unlimited.

Hi)Sandia National laboratories

Methods for

Issued by Sandia National Laboratories, operated for the United States Depart-
ment of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Govern-
ment, nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, make any warranty, express or
implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represent that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United
States Government, any agency thereof, or any of their contractors or
subcontractors. The views and opinions expressed herein do not necessarily
state or reflect those of the United States Government, any agency thereof, or
any of their contractors.

Printed in the United States of America. This report has been reproduced
directly horn the best available copy.

Available to DOE and DOE contractors from
Office of Scientific and Technical Information
P.O. BOX 62

Oak Ridge, TN 37831

Prices available from (615) 576-8401, FTS 626-8401

Available to the public from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Rd
Sprin@eld, VA 22161

NTIS price codes
Printed copy: A03
Microfiche copy: AO1

SAND98-8245
Unlimited Release

Printed March 1999

A Class of Trust-Region Methods for Parallel Optimization

P.D. Hough, J. C. Meza2
Computational Sciences and Mathematics Research Department, MS 9011

Sandia National Laboratories
Livermore, CA 94551-0969

ABSTRACT

We present a new class of optimization methods that incorporates a Parallel Direct
Search (PDS) method within a trust-region Newton framework. This approach combines
the inherent parallelism of PDS with the rapid and robust convergence properties of Newton
methods. Numerical tests have yielded favorable results for both standard test problems
and engineering applications. In addition, the new method appears to be more robust in the
presence of noisy functions that are inherent in many engineering simulations.

Keywords: parallel optimization, direct search methods, nonlinear programming.

email: pdhough@ca.sandia .gov
2emad: meza@ca.sandia.gov

3/4

1 Introduction

Optimization of functions derived from the modeling and simulation of some physical process
constitutes an important class of problems in many engineering and scientific applications.
Typically, the computer simulation entails the solution of a system of nonlinear partial dif-
ferential equations (PDE) in two or three dimensions. Other applications include particle

dynamics simulations or problems in chemical kinetics. The main characteristic of these
types of problems is that the function evaluation is computationally expensive and domi-
nates the total cost of the optimization problem. Depending on the nature of the application
and the solution method employed, there can also be noise associated with the evaluation
of the objective function. This noise can usually be reduced, but only at the cost of making
the computation time even greater. In many of these applications, derivative information
is also not available or must be computed using finite differences, thereby generating noisy
gradients. Fortunately, the dimension of the optimization problem in many of these optimal
design problems is small to medium (usually on the order of tens of parameters). In this
study, we will concentrate on the development of parallel unconstrained optimization algo-

rithms for the solution of these types of problems on small to medium scale shared memory
processors (SMP’S), where the number of available processors is comparable to the number of
optimization parameters. The rationale for this decision is that although massively parallel
computers are available, the majority of computational power in most industrial or scientific
settings consists of small to medium scale clusters of SMP’s or networks of workstations
(NOW’s) that can be used in a similar capacity.

There have been many attempts at parallelizing nonlinear optimization methods. In

the area of Newton methods, one of the earliest attempts at parallelization was the work of
Straeter [17], who developed a parallel rank-one updating formula for the Hessian approxima-
tions used in variable metric methods. This formula was later extended by Laarhoven [12] to
more general updating formulas. Byrd, Schnabel and Shultz [2] also proposed parallel Quasi-
Newton methods based on speculative gradient and Hessian evaluations. Schnabel [16] gave
an excellent review of the challenges and limitations in parallel optimization. In that review,
Schnabel identified three major levels for introducing parallelism: 1) parallelize the function,

gradient, and constraint evaluations, 2) parallelize the linear algebra, and 3) parallelize the
optimization algorithm at a high level.

In this study, we choose to focus on the third option due to the characteristics of the
problems mentioned above. In particular, the first option is not typically available to us
because for many situations we do not have access to the source code for the function or the
constraints. In addition, the dimension of the optimization problems of interest is usually
small, and therefore parallelizing the linear algebra would not yield any benefits.

The third option, that of parallelizing optimization at a high level, has recently received

5

more attention. Some attempts that fit into this category include methods such as parallel
direct search methods [7], genetic algorithms [11], and simulated annealing [10]. These
methods are inherently parallel and extremely popular in engineering optimization. Although
direct search methods can be a powerful tool, they suffer from slow convergence and thus
may require many function evaluations. In a setting where each function evaluation may
take several CPU hours to compute this is highly undesirable.

Newton-based methods, on the other hand, have good convergence properties, but there

are few options for parallelizing a typical Newton method at a high level. For the purposes
of this paper, we will assume that the gradient of the objective function is not available
and that finite differences are used to compute any necessary derivative information. Since
this calculation is easily parallelized, we will not consider this option. Another approach to
parallelization is the work by Phua and Zeng [15] in which they use a multiple line search,
multiple direction algorithm to introduce parallelism into a Newton method. However, it is
not clear how robust a line search method would be in a situation where the function and
gradient are noisy. Carter [3] has addressed the issue of inexact gradients for another class

of algorithms known as trust-region methods and has given conditions under which these
algorithms will converge. In a separate paper, Carter presented various numerical results [4]
for this class of algorithms,

In this paper, we consider a new class of methods that combines the parallel direct

search method and the trust-region method to produce a new class of algorithms that takes
advantage of the best properties of both algorithms. In particular, we will show that the rapid
convergence rates typical of Newton type methods is preserved while gaining the advantage
of parallelism inherent in the parallel direct search methods. In section 2, we describe the
new class of algorithms and consider their convergence properties in section 3. In section 4,
we give numerical results from a set of test problems and an application in optimal design.
We conclude in section 5 with a summary and a brief discussion of future research directions.

2 The Trust-Region PDS Algorithm

Before describing the new class of algorithms, we first give a brief overview of the standard
trust-region method and the parallel direct search (PDS) method due to Dennis and Torczon
[7]. In each iteration of a trust-region method, a quadratic model of the objective function,
j, is formed, and a region in which the model is trusted to approximate the actual function
accurately is determined. A trial step is then computed by solving the following subproblem:

min ~(s) = g(x.)~s + ~sTHcs

6

(1)

s. t. IIS112< ($C,

where XCis the current point, s is the step, g(xC),
H. is the current Hessian approximation, and 6. is

is the gradient of ~ at the current point,
the size of the trust region. We will refer

to this as the trust-region subproblem. In a typical implementation, the step s will be a step
in the steepest descent direction, the Newton direction, or some convex combination of the
two. The trust-region method is illustrated in Figure 1.

Figure 1: Standard trust-region method

The parallel direct search algorithm belongs to a class of optimization methods that do
not compute derivatives. The PDS algorithm can be briefly described as follows. Starting
from an initial simplex SO, the function value at each of the vertices in SO is computed and
the vertex corresponding to the lowest function value, V., is determined. Using an underlying
grid structure, So is reflected about V. and the function values at the vertices of this rotation
simplex, S7, are compared against the function value at V.. If one of the vertices in S, has
a function value less than the function value corresponding to V., then an expansion step to
form a new simplex, S., is attempted in which the size of ST is expanded by some multiple,
usually 2. The function values at the vertices of Se are compared against the lowest function
value found in ST. If a lower function value is encountered, then S, is accepted as the starting
simplex for the next iteration; otherwise ST is accepted for the next iteration. If no function
value lower than the one corresponding to V. is found in ST, then a contraction simplex is
created by reducing the size of So by some multiple, usually 1/2, and is accepted for the
next iteration.

7

s

.

Because PDS only uses function comparisons, it is easy to implement and use. Since
the rotation, expansion, and contraction steps are all well determined, it is possible to pre-
compute a set of grid points corresponding to the vertices of the simplices constructed from
various combinations of rotations, expansions, and contractions. Given this set of grid points,
called a search scheme, the PDS algorithm can compute the function values at all of these
vertices in parallel and determine the vertex corresponding to the lowest function value.
The number of points used in the search scheme is referred to as the search scheme size and
it usually is adjusted to be at least equal to the number of processors available. Figure 2
demonstrates a typical PDS iteration.

Xo

Figure 2: PDS method

Both methods have advantages and disadvantages, as described in Section 1. In order to
combine the strengths of these methods, we propose a new class of algorithms which uses the
PDS method within a trust-region framework. This type of algorithm, which we will refer
to as TRPDS, is illustrated in Figure 3 and is described below. The controlling framework
is the same as that for standard trust-region algorithms, but the method of computing the
new step is different. Rather than solving the trust-region subproblem, the TRPDS method
solves

min ~(xC +s)

s. t.]1s(2 < 2&.

(2)

8 .

.

We will refer to this as the PDS subproblem. There are a few important points to note. The
first is that the actual objective function is being minimized as opposed to a quadratic model
of the objective function. Also, this subproblem is not solved to optimality; only a small

amount of decrease is required from PDS. Finally, the step length is allowed to be twice the
size of the trust
as is sometimes

region. This is to allow for the possibility of taking twice the Newton step,
done in the Newton framework.

Figure 3: TRPDS method

An overview of the TRPDS algorithm appears below, followed by a discussion of the
critical steps.

b

Algorithm 1. TRPDS

Given xO, go, Ho, Jo, and q G (0,1)

fork =O,l,. . . until convergence do
1. Solve ll~sjv = –g~
fori=O,l,... until step accepted do

2. Form an initial simplex using SN
3. Find an approximate solution si to (2) using PDS
4. Compute pi = (f(x~ + .92)– j(x~))/@~(s~)
if pi > q then

5. Accept step and set x~+l = x~ + SZ
else

6, Reject step
end if
7. Update J

end for
end for

Here we use the notation, g~ = g (x~), and Ilk = H(xk). There are several points to
consider within this framework. The initial simplex formed in Step 2 needs to be chosen
carefully. While there is a lot of freedom in the choice of the initial simplex, it will have
an impact on the solution to (2) and on the performance of the algorithm. There is also a
question as to how accurately we should solve (2). In many applications it may be reasonable
to ask for only a small fraction of decrease in the function since each function evaluation is so
expensive. This also has a bearing on the decision to accept or reject the new step. Finally,
the updating of the trust region must be addressed within the context of this framework. In
the following sections, we address each one of these issues.

2.1 Choosing the initial simplex

In Step 2 of the TRPDS algorithm we require the formation of an initial simplex. The
choice of this simplex is important to the performance of the PDS algorithm and deserves
careful consideration. There are three points that must be included in the simplex: the
current point, the Cauchy point, and the Newton point. The Cauchy point is defined to
be the minimizer of the quadratic model along the steepest descent direction. Likewise, we
define the Newton point, SN, to be the minimizer of the quadratic model along the Newton
direction. The current point must be in the simplex so that PDS can determine whether or
not it has found a descent direction. The Cauchy point is required to ensure convergence of
the algorithm. Finally, the Newton point is necessary to allow for the possibility of rapid

10

convergence in the limit. In practice, all three of these points are not always included, but
instead related points are used. A discussion of these substitutions follows.

Recall that in the standard trust-region algorithm, the step length is limited by the trust
region. When the Cauchy point or the Newton point falls outside of the trust region, it is
projected onto the trust region. As we are seeking to preserve as much of the trust-region
framework as possible, the construction of the initial simplex includes similar features. There
are three different scenarios that must be addressed.

1. Both the Cauchy point and the Newton point are inside the trust region. This case
is straightforward. The Cauchy point and the Newton point are used in the initial
simplex.

2. The Cauchy point is inside the trust region, and the Newton point is outside the trust
region. The Cauchy point is used in the initial simplex. The dogleg point ([6], p. 139)
is computed and replaces the Newton point in the initial simplex.

3. Both the Cauchy point and the Newton point are outside the trust region. Both points
are projected onto the trust region, and the resulting points are used in the initial
simplex.

For a problem of dimension n, PDS requires the initial simplex to have n+ 1 vertices. We
have described the selection of only three. The question of how to pick the remaining n – 2
vertices remains. While there are many logical ways to choose these points, the only real
restriction on them is that they be chosen such that the initial simplex is not degenerate.

Our current implementation uses n – 2 vertices from a right angle simplex. This simplex
can be generated by defining the remaining vertices to be a fixed distance in each of the n
coordinate directions from the Newton point (or its projection). The distance from each of
these vertices to the Newton point is the same as the radius of the trust region.

By constructing the simplex in the manner described here, there are two situations in
which it may be degenerate. One case can arise in the first iteration of the trust-region
method. If the initial Hessian is a multiple of the identity, then the Newton direction and
the Cauchy direction will be the same, so the simplex needs to be constructed in a slightly
different manner in the first iteration. We use the current point, the Newton point, and
n – 1 of the vertices from the right angle simplex around the Newton point. The dist ante
between the Newton point and the remaining points is the same as the radius of the trust
region. The other case of degeneracy arises if the edges of the simplex are badly scaled. This
is easily corrected by re-scaling all of the edges to be the same length as the Newton edge.
Note that this allows longer steps than if all edges were re-scaled to be the same length as
the Cauchy edge.

11

4

2.2 Solving the PDS subproblem

One way to think about the TRPDS algorithm is to imagine using an optimization algorithm
within an optimization algorithm. As such, the PDS method needs algorithmic parameters
in order to solve the PDS subproblem. The initial simplex just described is only one of these
parameters. The PDS method evaluates the function at a set of pre-determined reflection,
contraction, and expansion points in order to determine a trial step. Recall, that the search
scheme for the PDS method can be determined ahead of time and need only be generated
once. However, during the optimization phase, the PDS method must determine how many
points in the search scheme to evaluate at each iteration. One possible choice in a parallel
setting, is to set this number equal to the number of processors that are available. PDS also
needs to know the size of the trust region, as that constrains the size of the step. In practice,
we relax the trust-region constraint in order to allow for the possibility of taking twice the
Newton step. Another constraint is that the step taken must satisfy a fraction of Cauchy
decrease condition according to some model; the implications of using various models are
considered in section 3.

Since the PDS subproblem is not solved to optimality, we use three criteria to determine
when to return a new step. The first is a simple decrease requirement. If a point with
a function value that is less than some large fraction of the function value at the current
point is found, then PDS returns the associated step. If such a step is not found, then
PDS returns when it has exceeded either the maximum number of function evaluations or
the maximum number of iterations allowed. In our implementation, we set the maximum
number of function evaluations to be the same as the search scheme size. This usually limits
PDS to one iteration. However, vertices of the simplex that are outside of the trust region are
not evaluated (because they are infeasible); thefore PDS may require additional iterations to
reach the maximum number of function evaluations so we also limit the number of iterations.

Currently, we use an upper bound of 1-3 iterations, though we find that this bound is not
usually needed in practice.

2.3 Acceptance/Rejection of step

Once a step has been computed, it is necessary to determine whether or not it is acceptable.
This is handled by the trust-region framework. If there is sufficient decrease, then the
step will be accepted. Otherwise, the step is rejected. In a standard trust-region method,
sufficient decrease is determined by computing ~k as given in Step 4 of the algorithm and
comparing it to some tolerance that depends on the computational expense of the function.
If it is greater than the tolerance, then the decrease is sufficient. There
that arise in the TRPDS algorithm that require minor modifications to

are two situations
this scheme. It is

12

possible that PDS will find no decrease, and thus return a step of zero length. In this case,
p~ is not computed, and the step is rejected immediately. Because PDS minimizes the actual
function and not the quadratic model, it may compute a step for which the model predicts
increase. Again, p~ is not computed, but the step is accepted since there is reduction in the
actual function.

2.4 Updating the trust region

The procedure for updating the trust region is based on the value of p and on the length of
the computed step. At each iteration, the trust region is updated as follows:

I
min(dk,1[~112)/lo,if p~ < ql or]{s~l]2= O

d~+~ =
\ls~112/2, ifql<pk<q2
2“&, if7s<pk<2–V3

max(2 “ l[sk112,Jk), otherwise.

Here E is the longest edge of the final PDS simplex, and VI, V2,q3 ~ (O, 1). Notice that when
the trust-region size is reduced, the radius of the new trust region may not be any larger
than E, thus eliminating the possibility of re-checking points that are already known to be
unacceptable. In our algorithm, we also impose a maximum trust region that is allowed at
any iteration.

3 Convergence Results

Since our new algorithm can be viewed as a special case of a trust region algorithm the stan-
dard convergence results can be applied. However, it is interesting to note that Algorithm 1
can be viewed as a specific instance of the more general framework for approximation models
described in [1]. Within that framework the PDS subproblem (2) is a subcase of the approx-
imation models proposed in that report. As such, if we make the standard assumptions used
for the classical trust-region algorithms and the approximation model satisfies two additional

conditions described in [I], then convergence for the new algorithm is easy to prove.
In particular, we must assume that the sequence of iterates satisfies a condition commonly

known as fraction of Cauchy decrease. That is, there exist constants, ~ >0 and C >0,

independent of k, for which the step sk taken at iteration k satisfies

(“9(:)”2),f(xk) – ak(xk + Sk) ~ @ Ildxk)llz ‘in ~k, (3)

13

.

●

where ak denotes the model being used to approximate the objective function. In addition,
the approximation model, ak, used within the trust-region framework must also satisfy the
following two conditions:

ak(xk) = .f(xk)! (4)

Vak(xk) = vf(x~). (5)

Theorem 3.1 Assume that f is uniformly continuously differentiable, bounded below, and
the Hessian approximations are uniformly bounded. Furthermore assume that the sequence

of iterates generated by Algorithm 1 satisfies (3)-(5). Then

lim infl]Vf(x~)llz = 0.
k+cc

In our particular case, the approximation model is exactly the objective function that
we are seeking to minimize. Using the terminology in [I] this would correspond to a second-
order model. Note that we are only using function information to solve the PDS subproblem
and hence we do not take advantage of any first or second order information inherent in
the model. However, this information is used outside the subproblem to compute the initial
Newton step and Cauchy point. Thus, this method has characteristics of both zero-order
and second-order methods.

In fact, since Algorithm 1 uses widely accepted criteria for updating the steps within the
trust-region framework, it is easy to show that the stronger condition

kn llvf(xk)ll~ = O
k-we

holds.
This is satisfying, in that the new class of algorithms inherits all of the good theoretical

convergence properties of the classical trust region methods while incorporating all of the
practical advantages of PDS for typical engineering optimization problems.

4 Numerical Results

In order to evaluate the performance of the TRPDS algorithm in practice, we chose a set
of test problems from the literature. These problems were obtained from papers by Mor6,
Garbow, and Hillstrom [14], Byrd, Schnabel, and Shultz [2], and Corm, Gould, and Toint
[5]. Some of these problems are also used by Phua and Zeng [15]. For comparison purposes,
we also solved these problems using a standard BFGS trust-region algorithm.

14

The starting points used for these problems were the same as those given in the references.

Computation of finite difference gradients is currently not parallelized. All initial conditions
are listed below:

Initial Trust Region =

Machine Epsilon =

Maximum Step =

Minimum Step =

Maximum Iter =

Maximum Fcn Eval =

Step Tolerance =

Function Tolerance =

Gradient Tolerance =

0.1“ llgol]~

2.22045010-16

4000
1.49012“10-8
500
1,000,000
1.49012.10-8
1.49012.10-8
IO-6

The step tolerance, the function tolerance, and the gradient tolerance are used as stopping

criteria for the optimization algorithms. At the end of each iteration the step length relative
to the size of the current point, the change in the function relative to the current function
value, and the size of the gradient relative to the current function value are determined.
When one of these falls below the associated tolerance, the algorithm has converged.

The results of the experiments appear in Tables 1–3. While reporting the number of

iterations taken may be useful in some settings, we believe that it is not useful here. In
our applications, the most important measure of performance is the total time to solution
of the problem. Since the computational cost of the function evaluations dominates the cost
of the algorithm, we base our comparison of TRPDS with 13FGS on the number of function
evaluations. Since the TRPDS algorithm is run in parallel and the trust-region method is
serial, comparing the total number of function evaluations required for each is not a fair
method of comparison.

Instead, we compare the number of concurrent function evaluations defined as follows.

Suppose that p processors are available, where p z 1. If p independent function evaluations
are required, then each processor can be tasked to perform one of them. This means that
all function evaluations can be done simultaneously. Thus, we define a concurrent function
evaluation to be one instance of p function evaluations being performed simultaneously.
Comparing the number of concurrent function evaluations is therefore roughly equivalent
to comparing total wall clock time. The numbers that appear in Tables 1–3 are the ratios
of the number of concurrent function evaluations taken by the TRPDS algorithm to the

15

number of concurrent function evaluations taken by the serial trust region method. Each
table corresponds to a different dimension for the problem set (represented by n). Ratios
less than one indicate that the TRPDS algorithm will take less overall time.

The tests were run on a 64-processor SGI Origin 2000 with the IRIX 6.4 operating system.
For the TRPDS algorithm, the ideal situation is to have the same number of search scheme
points as processors so that each processor evaluates the function at one search scheme point
per iteration. However, with limitations on the available resources, this was not always
possible. In particular, in the 16-dimensional problems with a search scheme size of 128,
each processor evaluated two search scheme points per iteration.

Table 1: Ratios of concurrent function evaluations for the TRPDS algorithm versus a stan-
dard BFGS trust-region method.

n=q Search Scheme Size
problem n+l 2*n 4*n 8~n

broydenla 0.72 0,72 0.72 0.51
broydenlb 1.18 1.07 1.07 1.07

I broyden2a
I 1 1

0.66 0.72 0.59 0.59
\ broyden2b t 0.62 0.62 0.62 0.55

! I 1

I chain~ingular 0.46 0.62 0.64 0.37
chebyquad 1.50 1.02 1.27 1.44
cragglevy 0.93 0.68 0.83 0.79
epowell 0.93 0.93 0.98 0.93

1 1 1

1“erosen 1,54 1.45 1.31 1.23
gen-brown 1.06 1.06 0.94 1.06
penaltyl 0.88 0.88 0.48 0.48
penalty2 1.18 1.18 1.18 1.18
toint-trig 1.96 2.84 2.32 2.24
tointbro~ 1.08 1.08 1.08 0.88
trig 1.03 0.95 0.95 0.87

.

I va~dim
1 1 1

0.50 0.50 0.50 0.76
1 ! I I I I

16

Table 2: Ratios of concurrent function evaluations for the TRPDS algorithm versus a stan-
dard BFGS trust-region method.

n=8 Search Scheme Size
problem n+l 2*n 4*n 8*n

brovdenla 0.86 0.77 0.82 0.72
bro~denlb

1 I 1

t 1.02 0.95 0.95 1.02
bro~den2a

I
0.38 0.38 0.34 0.34

bro~den2b
1 1 1

0.55 0.55 0.55 0.55
chain-singular
chebyquad
cragg-levy
e~owell.
erosen
gen.brown
penaltyl
penalty2
toint-trig
tointbroy
trig
vardim

0.81 1.40 1.90 1.86

0.93 0.85 0.85 0.68
1.12 2.30 2.07 0.45
0.95 0.67 0.85 0.71

1 1 1

2.43 2.38 1,97 2.39

t 0.81 0.81 0.96 1.03
I [1

0.80 0.80 0.72 0.69
I

0.64 1.40 1.51 1.28 1

17

b

.

Table 3: Ratios of concurrent function evaluations for the TRPDS algorithm versus a stan-
dard BFGS trust-region method.

n=~6 Search Scheme Size
1

problem n+l 2*n14*n/8*n
broydenla

r ! 1 1

0.66 0.73 0.66 0.73 I
brojdenlb 1.06 1.00 1.06 1.05

bro~den2a
1 1 I

0.36 0.36 0.33 0.32
bro~den2b

I 1
0.51 0.51 0.47 0.61

“E3iRaEl
chain.singular .
chebyquad
cragglevy
epowell
erosen 0.81 2.61 1.19 0.85
gen-brown 0.58 0.64 0.53 0.55
penaltyl 0.55 0.55 1.11 0.42
penalty2 0.45 0.50 0.37 0.34
toint.tri~ 1.94 0.93 0.93 0.97

I 1 1

tointbroy I 0.75 0.75 0.90 0.90
tri~ 0.73 0.73 0.68 0.66 I

! 1 I

vardim 0.84 0.84 1.14 1.02

Theresults shown in Tables 1–3 allow us to make some general observations about the
effect of the search scheme size and the dimension of the problem. For a given problem, the
size of the search scheme has very little, if any, effect on the performance of the algorithm in
comparison to the standard trust region algorithm, The dimension of the problem appears
to have an effect in some cases, but there is no clear trend.

Schnabel [16] presents an argument for the merits of a line search algorithm with specu-
lative gradient evaluation. This entails using extra processors to compute the components of
a finite difference gradient at the current point while the function is being evaluated at that
point. In essence, he argues that it is difficult to develop a parallel line search algorithm that
will perform better than a speculative gradient algorithm, particularly when the dimension
of the problem is not much larger than the number of available processors. We present a
theoretical comparison between our algorithm and a speculative gradient algorithm based on
the analysis presented by Schnabel. The number of concurrent function evaluations required

18

by the speculative gradient algorithm is given by

(~s+[w””$
where n is the dimension of the problem, p is the number of processors, and ~t~ is the number

Mof iterations. So & is the number of concurrent function evaluations required to compute
the function and the gradient at a successful trial point. The variable y. denotes the average
number of unsuccessful trial points per iteration. Note that rejecting -y~points per iteration
corresponds to performing ~, concurrent function evaluations per iteration. For the TRPDS
algorithm, each iteration requires (;1 concurrent function evaluations for the gradient, (~1

for the initial simplex, and (Y1 for the search scheme points, where SSS is the search

scheme size. Therefore, the total number of concurrent function evaluations is given by

(2*~.p&+2* H+l%l)”’’npds
Note that we are assuming that the PDS algorithm takes one iteration. Also, it is necessary
to add 2 * ymP~s.This is because rejecting one step in the TRPDS algorithm corresponds to
performing two additional concurrent function evaluations, one for the initial simplex and
one for the search scheme. In order for the TRPDS algorithm to beat the speculative gradient
algorithm, it must take fewer concurrent function evaluations, and thus the following must

(6)

Tables 4–6 show the ratios of the number of iterations taken by the TRPDS algorithm
to the number taken by the standard trust-region method. The contours in Figures 4–6
represent break-even points, as given by the right-hand side of 6, for various values of p and
SSS. For the purpose of the figures, YS= ~.Pds = O. By using the tables and figures together,

it is possible to determine for which tests the TRPDS algorithm will be competitive with
speculative gradient. For example, consider problem vardim with n = 4. When SSS = 5,
Table 4 shows that the TRPDS algorithm took 38% of the iterations required for the standard
trust-region method. Now turning our attention to Figure 4, we can compare this number
to various break-even points. When p = 5, the break-even point is 33?10,so a speculative
gradient algorithm would be faster than TRPDS. However when p = 4, the break-even point

is 50Y0, and thus the TRPDS algorithm would be faster than speculative gradients, in that
case.

19

.

Table 4: Ratio of number of nonlinear iterations for the TRPDS algorithm
region method.

n=l Search Scheme Size
problem n+l 2*n 4*n 8*n

broydenla 0.59 0.59 0.59 0.41
broydenlb 1.00 0.90 0.90 0.90
broyden2a 0.53 0.59 0.47 0.47
broyden2b 0.50 0.50 0!50 0.44
chain~ingular 0.36 0.50 0.52 0.30
chebyquad 1.25 0.88 1.13 1.25
cragglevy 0.78 0.56 0.69 0.66
epowell 0.78 0.78 0.83 0.78
erosen 1.30 1.23 1.10 1.03
gen-brown 0.89 0.89 0.78 0.89
penaltyl 0.73 0.73 0.36 0.36
penalty2 1.00 1.00 1.00 1.00
toint-trig 1.56 2.33 1.89 1.67
tointbroy 0.91 0.91 0.91 0.73
trig 0.86 0.79 0.79 0.71
vardim 0.38 0.38 0.38 0.62

versus the trust-

20

Comparison of Newtpds to BFGS with speculative gradient
(dim =4)

‘1 2 3
Number of processors

Figure4: Contour plot of break-even points fordim=4

21

Table 5: Ratio of number of nonlinear iterations for the TRPDS algorithm versus the trust-
region method.

n=s Search Scheme Size
problem n- l-l 2*n 4*n 8*n

brovdenla 0.77 0.68 0.73 0.64
bro~denlb

I I I

0.93 0.86 0.86 0.93
broyden2a 0.32 0.32 0.28 0.28
broyden2b 0.48 0.48 0.48 0.48

1 [1

chain_sinmdar 0.42 0.44 0.43 0.31 1
I I I

chebyquad 0.92 0.85 0.85 0.88. . 1 1 1

cragglevy 0.35 0.32 0.37 0.49
epowell 0.80 0.80 0.88 0.80 1

1 1 1

erosen 0.74 1.28 1,72 1.70
gen-brown 0.83 0.75 0.75 0.58
penaltyl 1.00 2.13 1.88 0.38

Denaltj2 t 0.84 0.58 0.74 0.63. .
toint.trig

I I I

2.25 2.17 1.75 2.00
1 1 1

tointbroy 0.71 0.71 0.86 0.93 I
trig 0.71 0.71 0.64 0.61

1 ! I

vardim 0.56 1,28 1.39 1.17

●

22

Comparison of Newtpds to BFGS with speculative gradient
(dim =8)

, 1
&

0
&

/

~%%

o &
c-n

,,/

0
“m
%

01

,$

2 4

,,

I 1 !

10 12 14 6

Figure5: Contour plot of break-even points fordim=8

23

*

Table 6: Ratio of number of nonlinear iterations for the TRPDS algorithm versus the trust-
region method.

n=16 Search Scheme Size
problem ln+l12*n\4*n18*n\
brovdenla 0.61 0.68 0.61 0.65

I 1 1

bro~denlb 1.00 0.94 1,00 0<94
bro;den2a

, ! I
0.32 0.32 0.29 0.26

bro~den2b
I I 1

0.46 0.46 0.43 0.54, ,
chain-sinmdar 0.43 0.41 0.33 0.33

I ! I

chebyquad 0.77 0.72 0.66 0.77. . I

cragglevy 0.43 0.39 0.56 0.34
epo-well 0.78 0.74 0.59 0.70. 1 1 1

erosen 0.76 2.51 1.14 0.76
gen-brown 0.53 0.59 0.47 0.47
penaltyl 0.50 0.50 1.05 0.35
penalty2 0.41 0.46 0.34 0.29
toint-trig 1.81 0.88 0.88 0.88,
tointbrov 0.70 0.70 0.85 0.80 1’. I I I

trig 0.68 0.68 0.63 0.58,
vardim 0.78 0.78 1.09 0.91

I I \ 1 1

24

.

Comparison of Newtpds to BFGS with speculative gradient
(dim = 16)

5 10 15

1 1 1

Q?

/’
/“

20 25 30
Number of processors

Figure 6: Contour plot of break-even points for dim = 16

Based onthese results, wecandraw several conclusions. Again, wenotice that thesizeof
the search scheme has little effect on the performance of the TRPDS algorithm. There are
several factors that may be contributing to this effect. The first is that we have biased the
search directions towards the Newton point through our method for constructing the initial
simplex. The second factor is the order in which the search scheme points are chosen and
evaluated. In the standard PDS algorithm, the reflection points are evaluated first, followed
by the contraction points and the expansion points. Since the Newton point is often a good
trial point we would not expect nearby points to have a lower function value and that we
need to take a large step before finding a better point. Due to the construction of the search
pattern this requires a large search scheme before we start to evaluate the expansion points.

In a situation where we are far away from the solution or the function or gradient is
noisy, the Newton point might not be a good trial point. In this case, the reflection and
contractions points may yield better trial points than the Newton point and thus increasing
the search scheme size might improve the performance of the algorithm. This is a point that

25

will require further investigation. It would also be interesting to try different methods for
creating the initial simplex to determine the effect on the algorithm’s efficiency.

Figures 4–6 indicate that our algorithm is within striking distance of the speculative
gradient algorithm when the number of processors is equal to the dimension of the problem
and when the search scheme size is less than or equal to the number of processors. Another
point to note is that when the number of processors is twice the dimension, a speculative
gradient technique could be implemented within the TRPDS algorithm. To summarize, the
TRPDS algorithm can be competitive with the speculative gradient algorithm in two cases:

l. SSS~p=n,

2.p>2 *n.

4.1 Furnace design test problem

As another test case, we chose an optimization problem derived from a design problem of
a vertical, multi-wafer furnace. Vertical furnaces can process up to 200 silicon wafers in
a single batch and have been used for thin film deposition, oxidation, and other thermal
process steps. The evolution of vertical furnaces has been driven by the need for process
uniformity (that is, wafer-to-wafer and within-wafer uniformity) and high wafer throughput.
A recent variation of the multiwafer reactor design is the small-batch, fast-ramp (SBFR)
furnace. The SBFR is designed to heat-up and cool-down quickly, thus reducing cycle time
and thermal budget. The SBFR consists of a stack of eight-inch diameter silicon wafers
enclosed in a vacuum-bearing quartz jar. The stack is radiatively heated by resistive coil
heaters contained in an insulated canister. The heating coils can be individually controlled
or ganged together in zones to vary the emitted power along the length of the reactor; a
seven-zone configuration is shown in Figure 7. There are six control zones (each containing
several heating coils) along the length of the furnace and one heater zone in the base. The
zones near the ends of the furnace are usually run hotter than the middle zones to make up
for heat loss.

The thermal design optimization problem can be described as follows. Given a set number

of fixed heating coils, how can the coils be grouped in the fewest number of control zones
such that the temperature deviation about a fixed set-point is minimized. For this example,
we concentrate on finding the optimal power settings and related temperature uniformity for
a fixed zone configuration. The objective function, F, is defined by a least-squares fit of the
N discrete wafer temperatures, TW,Z,to a prescribed profile, T,,i,

N

(7)~ (Pj) = x (~w,i – Z?,Z)2 ,

Z=l

26

. ●

✎✎✎✎✎✎ ✎

✎✎✎✎✎✎ ●

✎✎✎✎✎✎ ●

✎✎✎✎✎✎ ✎

✎✎✎✎✎✎ ●

✎✎✎✎✎✎ ✎

✎✎✎✎✎✎

✎✎✎✎✍✎ ●

✎✎✎✎✎✎ ●

✎✎✎✎✎✎ ●

✍✍✍✍✍ ✚
✎✎✎✎✎✎

✎✎✎✎✍✎ ●

✎✎✎✎✎✎ ●

✎✎✎✎✎✎ ✎

✎✎✎✎✎✎ ●

✎✎✎✎✎✎

✎✎✎✎✎✎ ●

✎✎..&. ●

..-. >. ●

.

. ●

..A.a ,

..*.. .

~..

. ●

.

.

. ●

.- .

. ----- ●

. ●

. ●

. ●

. ●

.

. ●

..*-.. .

~.~.. .

. ●

. ●

. ●

Zone 7 I Z :- ::..:.:-
......

.

.

.....

,*,*-. .--, --------
I*
,0

,. .:.:.:.

i . ..-.-., Zone 5
I* ..-.-..
(* ..:.:..
L*. *.# .-------~. ~...+.
,.
,.-
1: .:::
IO .:.:.:, Zone 4
,. .
1. .:::::.,*

m

I*

1. ..-.-.,.-,0 Zone 1
-- .ffi ~--------

............
. .

.4...

----------_*-~~~-*-----~

. -..

Figure 7: Vertical Batch Furnace with Seven Control Zones

where the pj are the unknown power parameters.
The engineering heat transfer model used in this example was developed by Houf [9]

specifically for the analysis of vertical furnaces (the actual simulation code used in our
experiments is called TWAFER). Given a set of powers, pj, each call to TWAFER produces
a set of temperatures for the entire furnace from which the wafer temperatures are extracted.
The heat transfer formulation is simplified by using mass lumping and one-dimensional
approximations. The nonlinear transport equations are solved using the TWOPNT solver [8],
which uses a Newton method with a time evolution feature that computes the steady state
solution, By varying the tolerances for the TWOPNT solver it is possible to increase the
accuracy of the steady-state solution at the cost of increasing the computational time. In
particular, we have chosen to vary a parameter that determines the relative convergence
tolerance, RTOL, for the steady-state solution of the underlying PDE.

There are many different parameter combinations that have been considered in previous
studies of the TWAFER code [13], For this particular example we used only one configura-
tion, namely a design problem with 7 heater zones: one bottom heater and six equally-sized
side heaters. Each simulation used a model that contained 100 wafers with ten discretization
points per wafer. Our initial guess for the powers was: pO = {100, 200,300,2700,100,400, 2000}.

Table 7 contains the total number of iterations as well as the total wall clock time by each

27

method to compute a solution. With respect to the total wall clock time, the new method
is competitive with the standard BFGS method in almost all cases. In addition, the new

method is more robust for the larger values of RTOL. These values correspond to a very
loose convergence tolerance for the PDE solver in the TWAFER modeling code. In these
cases, the standard BFGS method did not converge to a solution while the new method
still manages to proceed. In these cases, the algorithm terminated with the trust region
shrinking below its minimum allowed size. This failure to converge is probably due to large
inaccuracies in the gradient evaluations due to the loose tolerances in the PDE solutions,

Table 7: Number of nonlinear iterations and wall clock time.

BFGS NEWTPDS

RTOL iter time iter time
~~-2

3* 154.471 100 5217.98
10-3 30” 1603.75 100 6872.32
IO-4 64 4470.97 100 8857.03
IO-5 31 2729.82 25 2786.17
10-6 39 4145.88 33 4468.22
~()-7 34 4516.57 24 3832.82
10-8 31 4612.38 26 4548.66
10-9 31 5152.05 25 4969,36
10-10 31 6044.57 22 5101.78
10-11 31 6576.52 28 6915.97
10-12 31 6600.24 23 5774.78
* indicates the method did not converge

The resulting power values were then given to the TWAFER simulation using a value
of RTOL = 10–12. Figures 8-9 show the wafer temperatures that result with the computed
powers. The interesting point here is that even with relatively large values of the parameter
RTOL the resulting temperatures are still quite reasonable. As we have already noted, for
these same values of RTOL the BFGS algorithm did not converge.

28

~.. — ----------- . ..-_”- ---+

----- _____

--.~~
-- —...

-------<b

-*
-%<

%,

9 I.t

lL

-L
% 1

i

— .00001
— .0001
---- .001
--- .01

1240
0.0 200.0 400.0 600.0 800.0 1000.0

Distsnce from bottom of furnace

Figure 8: Computed temperatures for various values of RTOL using NEWTPDS

29

1340.0

1320.0

0 1300.0
5
~
al

E
* 1280.0

1260.0

1240.0 1 1 1 , I
0.0 200.0 400.0 600.0 800.0 1000.0

Distance from bottom of furnace

Figure 9: Computed temperatures for various values of RTOL using BFGS

5 Summary

We have described a new class of algorithms for parallel optimization. The general framework
consists of a trust-region model where the standard subproblem is solved using a parallel
direct search method that takes advantage of parallelism to solve the problem more effi-
ciently on multiprocessors. This new algorithm can be shown to have the same convergence
properties as trust-region methods. In addition, the practical properties of the parallel direct
search methods can be used to solve engineering optimization problems that are noisy, or
lack analytic derivatives.

This new class of algorithms was tested on a standard set of test problems where it
performed favorably against the traditional BFGS method, We also tested this new algorithm
on a test case derived from an optimal design problem for a chemical vapor deposition
furnace. The results indicate that the new method is competitive with the traditional BFGS
method. In addition, the new method is more robust in the presence of noise that is generated

30

bytheuse oflessaccurate PDEsolvers. Thisisan important feature since manyusers would
prefer to use less accurate PDE solvers in order to reduce the total computational time.

There are many new options to explore. In particular, it would be useful to develop
strategies for bound constrained and general inequality constrained problems. We also need
to address some issues related to the distribution of function evaluations in order to im-
prove the efficiency of the algorithm. It would also be interesting to explore more general
approximation models within this new framework.

Acknowledgments. We wish to thank J.E. Dennis, Jr. and M. Heinkenschloss for
many helpful discussions and for pointing out the relationship between our new algorithm
and the framework for approximation models.

References

[I] N. ALEXANDROV, J. E. DENNIS, JR., R. M. LEWIS, AND V. TORCZON, A trust
region framework for managing the use of approximation models in optimization, Tech.
Report 97-50, ICASE, Hampton, VA, 1997.

[2]R. H. BYRD, R. B. SCHNABEL, AND G. A. SHULTZ, Parallel quasi-newton methods

for unconstrained optimization, Mathematical Programming, 42 (1988), pp. 273-306.

[3] R. G. CARTER, On the global convergence of trust region algorithms using inexact
gradient information, SIAM J. Numer. Anal., 28 (1991), pp. 251-265.

[4] — Numerical experience with a class of algorithms for nonlinear optimization using
inex;ct function and gradient information, SIAM J. Sci. Comput., 14 (1993), pp. 368-
388.

[5] A. R. CONN, N. 1. M. GOULD, AND P. L. TOINT, Testing a class of methods for soJu-
ing minimization problems with simple bounds on the variables, Tech. Report Research
Report CS-86-45, University of Waterlooj Waterloo, CA, 1986.

[6] J. E. DENNIS, JR. AND R. B. SCHNABEL, Numerics/ Methods for Unconstrained
Optimization and Nonlinear Equations, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1983.

[7] J. E. DENNIS, JR. AND V. TORCZON, Direct search methods on parallel machines,
SIAM J. opt., 1 (1991), pp. 448-474.

[8] J. F. GRCAR, “TWOPNT Program for Boundary Value Problems, Version 3. 10“, Tech.

Report SAND91-8230, Sandia National Laboratory, Livermore, CA, April 1992.

31

.-

1

1

1

1

1

1

1

Dr. Stephen Nash

Operations Research and Applied Statistics

George Mason University

Fairfax, VA 22030-4444

Dr. Jorge Nocedal

Department of Electrical Engineering and Computer Science

Northwestern University

Evanstown, IL 60208-0001

Dr. Linda R. Petzold

Department of Mechanical and Environmental Engineering

University of California

Santa Barbara, CA 93106

Dr. Robert Schnabel

Department of Computer Science

University of Colorado at Boulder

Campus Box 430
Boulder, CO 80309-0430

Dr. William Symes

Department of Mathematical Sciences

MS 134

Rice University

P.O. BOX 1892

Houston, TX 77251-1892

Dr. Richard Tapia

Dept. of Mathematical Sciences

MS 134

Rice University

P.O. BOX 1892

Houston, TX 77251-1892

Dr. Virginia Torczon

Department of Computer Science

College of William and Mary

P. O. BOX8795

Williamsburg, VA 23187

“

-.

34

1

1

1

1

1

1

1
1
1
1

Dr. Margaret Wright

AT&T Laboratories

Room 2C-462

600 Mountain Avenue

Murray Hill, NJ 07974

Dr. Stephen Wright

Argonne National Laboratory

MCS Division

Argonne, IL 60439

Stephen A. Vavasis

Department of Computer Science

493 Rhodes Hall

Cornell University

Ithaca, NY 14853

Stephen A. Wirkus

Center for Applied Mathematics

657 Rhodes Hall

Cornell University

Ithaca, NY 14853

Thomas R. Nicely

Department of Mathematics

Lynchburg College

1501 Lakeside Drive

Lynchburg, VA 24501

MS 9001 T. O. Hunter, 8000

Attn: J. B. Wright, 2200
D.L. Crawford, 5200

M.E. John, 8100

L.A. West, 8200

W.J. McLean, 8300

P.N. Smith, 8500

P.E. Brewer, 8600
T.M. Dyer, 8700

L.A. Hiles, 8800

MS 9003 D. R. Henson, 8909

MS 9007 R. C. Wayne, 8900

MS 9011 P. W. Dean, 8903

MS 9011 B. Hess, 8910

35

1 MS 9011 J. C. Meza, 8950

1 MS 9011 M. Rogers, 8960

1 MS 9011 J. A. Larson, 8970

1 MS 9012 K. Hughes, 8~0

1 MS 9012 S. Gray, 8930

1 MS 9019 B.A. Maxwell, 8940

1 MS 9037 J. Berry, 8930-1

1 MS 1202 M. FOX, 8940

10 MS 9214 P. D. Hough, 8950

1 MS 9214 T. Kolda, 8950

3 MS 9018 Central Technical Files, 8940-2

1 MS 0899 Technical Library, 4916

1 MS 9021 Technical Communications

Department, 8815/Technical Library MS 0899,4916

1 MS 9021 Technical Communications

Department, 8815 For DOE/OSTI

36

	ABSTRACT
	1 Introduction
	2 The Trust-Region PDS Algorithm
	2.1 Choosing the initial simplex
	2.2 Solving the PDS subproblem
	2.3 Acceptance/Rejection of step
	2.4 Updating the trust region

	3 Convergence Results
	4 Numerical Results
	4.1 Furnace design test problem

	5 Summary
	References
	DISTRIBUTION

